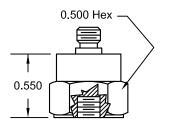
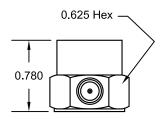


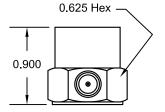
Columbia Research Laboratories, Inc.

PIEZOELECTRIC ACCELEROMETERS
PRESSURE TRANSDUCERS
ACOUSTIC SENSORS

www.crlsensors.com


Table of Contents


Content	Pages
General Purpose Accelerometers	. 1-4
Miniature Accelerometers	5-6
Integrated Accelerometers	. 7-10
Special Application Accelerometers	11-12
Triaxial Accelerometers	13
Vibration / Temperature Transmitter	14
Engine & Airframe Vibration Sensors	15
Dynamic Pressure Sensors	16-19
Signal Conditioning Instruments	20-21
Cable Assembly	22
Mounting Accessories	23

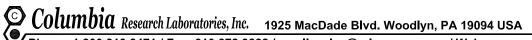

SERIES 3000

The 3000 Series of Accelerometers are for a wide range of vibration and shock work. The unique design of the piezoelectric seismic system inherently provides complete mechanical isolation of the sensing element so that the sensors are insensitive to mounting torque, body strains, cable vibration, cable whip, pressure variations and most heat transients. The signal is self-generating requiring no external power source.

- WIDE TEMPERATURE RANGE
- ISOLATED SEISMIC SYSTEM
- TOP OR SIDE CONNECTORS
- LOW BASE STRAIN SENSITIVITY

383

3021, 3022, 3023, 3029


3023M1, 3030, 3031, 3032, 3033

3023M5

MODEL	unit	383	3021	3022	3023	3023m1	3023m5	3024	3025
Sensitivity (1)	pC/g	0.5 Nom	60±10	35±5	15±3	13±3	10±3	12±3	60±10
Capacitance	pF	325±100	725±60	725±60 650±60 1100±100			1200±240	450±50	725±60
Frequency Range ±5%	Hz	2 to 15000	1 to 5000	1 to 7000	1 to 10000	1 to !	5000	2 to 5000	1 to 5000
Mounted Resonant Frequency	kHz	80 Min	25 Min	35 Min	50 Min	28±3	Min.	30 Nom	25 Min
Transverse Sensitivity	%				5 N	⁄lax			
Amplitude Linearity	%	±1(BFSL)	±1(BFSL)/ 300g	=	£1(BFSL)/ 1000	g	±1(BFSL)	±1 (BFSL)/ 500g	±1 (BFSL)/ 300g
Insulation Resistance (2)	МΩ	10000 Min		2000	0 Min.		10000 Min	2000	0 Min
Isolation Resistance	МΩ	100 Min				0 (Case Gnd)			
Vibration Limit	g			1000 Max			500 Max	1000) Max
Shock Limit	g	20000 Max	2000 Max	2000 Max 5000 Max 10000 Max 1000 Max			3000 Max, 0.10mSec	5000 Max	2000 Max
Temp. Range	°F/°C	-65 to +350 (-54 to +175)	-100 to +350 (-73 to +175) -100 to +750				(-73 to +400)		o +350 o +175)
Humidity	%		0 to 98 0 to 100					0 to	98
Base Strain Sensitivity	g/uE	0.003 Equiv	0.008 Equiv				0.003 Equiv	0.01 typ	0.008 Equiv
Electromagnetic Sensitivity	g	0.005		0.	02		0.005	0.01	0.02
Configuration	type	Ring Shear		Single	e Ended Compre	ession		Shear	Single Ended Compression
Weight	oz (gm)	0.28 (8)	1.10 (30)	0.80 (23)	0.70 (21)	1.23 (35)	1.00 (28)	0.80 (23)	1.00 (28)
Housing	mat'l			18-8 Stainless			Hastelloy C-276	18-8 S	tainless
Electrical Interface	type				#10-32 Coa	xial Thread	,	,	
Mounting	Size				#10-32 Ta	pped Base			
Sealing	type		Ep	oxy		Hern	netic	Ep	oxy
Supplied Accessories									
Cable Assy (3)					LNH ⁻	T-10'			
Mounting Stud					#10-32 x 0	.375" Long			
Storage Case					Hard	wood			
Cal. Data					Ye	es			
Cal Certificate (4)					Ye	es			

Notes

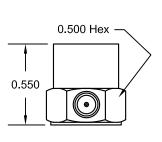
- 1. @75°F, 10g Peak, 100Hz Lower Frequency Limit Determined by Associated Electronics.
- 2. 50VDC Test

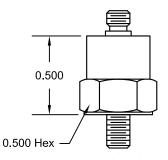
SERIES 3000

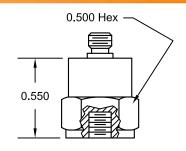
- **WIDE FREQUENCY RANGES**
- HIGH TEMPERATURE **VERSIONS AVAILABLE**
- **INSENSITIVE ENVIRONMENTAL INPUTS**

These sensors feature an industry standard 10-32 coaxial connector (side or top position); removable 10-32 mounting stud, and are supplied with 10ft. low noise cable assemblies. For best performance, Columbia Model 4601 Charge Amplifier, Series 5648 Airborne Amplifiers or 5421 Power supply combined with Inline charge converter model 5810 are recommended for use with these high impedance accelerometers. Additional mounting adapters and cable assemblies are also available.

0.625	i Hex	0.625 He	x —	0.630 Hex –	\	0.625 Hex	0.	5625 Hex	
0.775	0.5	550	0.785		0.800		0.750		
			<u> </u>		│ <u> </u>				
3	024	3025,3026,	3027	3025M3		3028		3051	
3026	3027	3028	3029	3030	3031	3032	3033	3051	
35±5	15±3	12±10	100±10	65±10	35±5	15±3	100±10	20±3	
	±60	450±50	8500±100	700±60)±60	8500±100	600±60	
1 to 7000	1 to 10000	2 to 5000	2 to	6000	2 to 7000	2 to 9000	2 to 6000	2 to 7000	
35 Min	50 Min	30 N	lom	35 N	lom	45 Nom	30 Nom	35 Min	
				5 Max		•			
±1(BFSL	_)/ 1000g	±1(BFSI	_)/ 500g	±1(BFSL)/300g	±1(BFSL	_)/ 1000g	±1(BFSL)/500g	±1(BFSL)/300g	
				20000 Min.			•		
0 (Cas	0 (Case Gnd) 100 Min 0 (Case Gnd)						100 Min		
		1000 Max			1500	Max	1000	Max	
5000 Max	10000 Max	5000 Max	1000 Max	2000 Max	5000 Max	10000 Max	1000 Max	10000 Max	
			-100 to +350	(-73 to +175)				-65 to +500 (-54 to +260)	
	0 to					0 to 100			
0.008	<u>_</u>	0.01 typ	0.003 Equiv		0.008 Equiv		0.003 Equiv	0.008 Equiv	
0.	02	0.0			0.02		0.01	0.02	
Single Ended	Compression	Shear	Single Ended Compression		Sing	le Ended Compre	ssion		
0.80 (23)	0.70 (21)	0.90 (26)	1.11 (31.5)	1.1 (31)	1.0 (28)	0.9 (25)	1.13 (32)	0.74 (21)	
				18-8 Stainless					
				0-32 Coaxial Thre					
			#	10-32 Tapped Bas	e				
	Ер	оху				Hermetic			
				LNHT-10'					
			#	10-32 x 0.375" Lor	ng				
				Hardwood					
				Yes					
	Yes								


^{3. 10}Ft LNHT Cable (see accessories page).


^{4.} Calibration Certificate is traceable to N.I.S.T.


SERIES 5000

The 5000 Series of Accelerometers are smaller and lighter than the standard 3000 series resulting in higher natural frequency and shock limits. These sensors are offered in a variety of sensitivities and mounting configurations. The accelerometer signal is self-generating requiring no external power source.

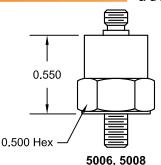
- HIGH "G" SHOCK UNITS
- SMALL SIZE AND LIGHT WEIGHT
- VERY WIDE FREQUENCY RANGE

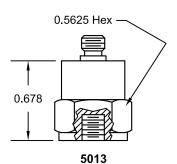
5001, 5002, 5003

5004, 5012

5005, 5007, 5011

MODEL	unit	5001	5002	5003	5004	5005		
Sensitivity (1)	pC/g	30±5	13±3	1±0.5	0.1±0.5	20±3		
Capacitance	pF	650)±50	300)±60	650±50		
Frequency Range ±5%	Hz	2 to 5000	2 to 1	0000	2 to 20000	2 to 10000		
Mounted Resonant Frequency	kHz	25 Nom	50 1	Nom	100 Nom	50 Nom		
Transverse Sensitivity	%		•	5 Max				
Amplitude Linearity	%	±1 (BFSL)/300g	±1 (BFSL)/500g	±1 (BFSL)/2000g	±1 (BFSL)/10000g	±1 (BFSL)/500g		
Insulation Resistance (2)	МΩ		•	20000 Min.	'			
Isolation Resistance	МΩ		0 (Case Gnd)		100 Min	0 (Case Gnd)		
Vibration Limit	g		1000 Max					
Shock Limit	g	2000 Max	5000 Max	20000 Max	100000 Max	2000 Max		
Temp. Range	°F/°C		-100 to +350 (-73 to +175)					
Humidity	%	0 to 98						
Base Strain Sensitivity	g/uE	0.	05	003	0.05			
Electromagnetic Sensitivity	g	0.01						
Configuration	type	Single Ended	Compression	Sh	ear	Single Ended Compression		
Weight	oz (gm)	0.56 (16)	0.35 (10)	0.33	2 (9)	0.5 (14)		
Housing	mat'l			18-8 Stainless				
Electrical Interface	type			#10-32 Coaxial Thread				
Mounting	Size		#8-32 Tapped Base		#10-32 Tap	oped Base		
Sealing	type			Ероху				
Supplied Accessories								
Cable Assy (3)				LNHT-10'				
Mounting Stud			#8-32 x 0.375"		#10-32 >	< 0.375"		
Storage Case				Hardwood	-			
Cal. Data				Yes				
Cal Certificate (4)				Yes				

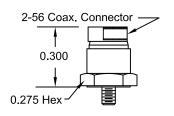

Notes.


- 1. @75°F, 10g Peak, 100Hz Lower Frequency Limit Determined by Associated Electronics.
- 2. 50VDC Test

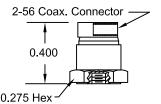
SERIES 5000

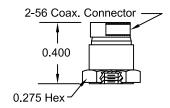
- LOW CROSS AXIS SENSITIVITY
- HIGH LEVEL SHOCK UNITS
- HIGH TEMPERATURE VERSIONS AVAILABLE

These sensors feature an industry standard 10-32 coaxial connector (side or top position), mounting stud, and are supplied with 10ft. low noise cable assemblies. For best performance, Columbia Model 4601 Charge Amplifier, Series 5648 Airborne Amplifiers or 5421 Power supply combined with Inline charge converter model 5810 are recommended for use with these high impedance accelerometers. Additional mounting adapters and cable assemblies are also available.


5006	5007	5008	5011	5012	5013	
20±3	9±	1.5	4.5±1.5	1.5±0.5	0.7±0.3	
	650±50		450±60	500±60	2000±20	
2 to 10000		2 to 12000		2 to	o 15000	
50 Nom		60 Nom		75 Nom	80 Nom	
		5 1	Лах			
±1 (BFSL)/500g	±1 (BFS	L)/ 1000g	±1 (BFSL)/500g	±1 (BF	SL)/ 2000g	
	•	2000	0 Min.			
	0 (Case Gnd)		100	Min	0 (Case Gnd)	
1000 Max 5000						
2000 Max 5000 Max 20000 Max						
		-100 to +350	(-73 to +175)			
		0 to	o 98			
	0.05			0.003		
		0	.01			
;	Single Ended Compression	on		Shear		
	0.5 (14)		0.39 (11)	0.32 (9)	0.46 (13)	
	, ,	18-8 S	tainless	, ,		
		#10-32 Co	axial Thread			
#10-32 Fixed Stud	#10-32 Tapped Base	#10-32 Fixed Stud	#10-32 Ta	pped Base	1/4-28 Tapped Base	
	•	Ep	oxy			
		LNH	T-10'			
Integrated	#10-32 x 0.375"	Integrated	#10-32	x 0.375"	1/4-28 x 0.375"	
	•	Hard	lwood			
		Y	es			
	<u> </u>	Y	es			


- 3. 10Ft LNHT Cable (see accessories page).
- 4. Calibration Certificate is traceable to N.I.S.T.


SERIES 6000

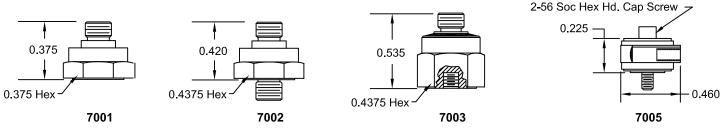

- EXTREME SMALL SIZE
- STUD OR ADHESIVE MOUNT
- LOW BASE STRAIN
- HIGH TEMPERATURE VERSIONS AVAILABLE

The Columbia 6000 Series Shear-Mode Piezoelectric Accelerometers are ideal for vibration work with the advantage of small size and lightweight to minimize loading effects. They are designed for the measurement of wide band moderate to high-level shock and vibration. The signal is self-generating requiring no external power source. They feature a 2-56 coaxial top connector and are supplied with 3 ft low noise cable assemblies as well as Columbia's micro-miniature detachable cable assembly. For best performance, Columbia Model 4601 Charge Amplifier, Series 5648 Airborne Amplifiers or 5421 Power supply combined with Inline charge converter model 5810 are recommended for use with these high impedance accelerometers.

6061 6062 6063, 6065 6064, 6066

3001			0002		0000, 0000		0001, 0000	
MODEL	unit	6061	6062	6063	6064	6065	6066	
Sensitivity (1)	pC/g		1.7±		0.5±	0.35		
Capacitance	pF		300±100					
Frequency Range ±5%	Hz		2 to 1	0000		2 to 2	20000	
Mounted Resonant Frequency	kHz		50 N	lom		100	Nom	
Transverse Sensitivity	%			;	5 Max			
Amplitude Linearity	%		±1(BFSL	.)/1000g		±1(BFS	L)/5000g	
Insulation Resistance (2)	ΜΩ			20	000 Min.			
Isolation Resistance	ΜΩ		0 (Case Gnd)		100 Min	0 (Case Gnd)	100 Min	
Vibration Limit	g							
Shock Limit	g		5000	Max		5000) Max	
Temp. Range	°F/°C			-100 to +3	50 (-73 to +175)			
Humidity	%			() to 98			
Base Strain Sensitivity	g/uE			0.0	05 Equiv			
Electromagnetic Sensitivity	g	0.01						
Configuration	type	Inverted Ring Shear						
Weight	oz (gm)	0.07	(2)	0.	13 (3.5)	0.07 (2)	0.10 (2.8)	
Housing	mat'l			18-8	Stainless	•	•	
Electrical Interface	type			Miniature #	2-56 Connector			
Mounting	Size	#4-48 Fixed Stud			#4-48 Tapped Base	•		
Sealing	type	Į.			Ероху			
Supplied Accessories								
Cable Assy (3)				L	NHT-3'			
Mounting Stud		Integrated			#4-48 x 0.250" Long)		
Storage Case		-		Ha	ardwood			
Cal. Data					Yes			
Cal Certificate (4)					Yes			
Micro-Mini Cable Assy (5)				M	MHR-6"			
Additional Hardware				#10-32	Coupler (F/F)			

Notes:

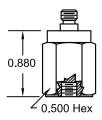

- $1.\ @75^{\circ}F,\ 10g\ Peak,\ 100Hz\ Lower\ Frequency\ Limit\ Determined\ by\ Associated\ Electronics.$
- 2. 50VDC Test

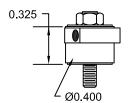
EXTREME SMALL SIZE

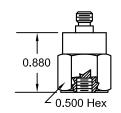
SERIES 7000

- STUD OR ADHESIVE MOUNT
- LOW BASE STRAIN
- HIGH TEMPERATURE VERSIONS AVAILABLE

The Columbia 7000 Series Shear-Mode Piezoelectric Accelerometers are ideal for vibration work with the advantage of small size and lightweight to minimize loading effects. They are designed for the measurement of medium frequency, moderate to high-level shock and vibration. The signal is self-generating requiring no external power source. They feature an industry standard 10-32 coaxial top connector and are supplied with 3 ft low noise cable assembly. For best performance, Columbia Model 4601 Charge Amplifier, Series 5648 Airborne Amplifiers or 5421 Power supply combined with Inline charge converter model 5810 are recommended for use with these high impedance accelerometers


MODEL	unit	7001	7002	7003	7005		
Sensitivity (1)	pC/g		3.3 Nom				
Capacitance	pF		250±5	0 Nom			
Frequency Range ±5%	Hz		2 to 5000		2 to 10000		
Mounted Resonant Frequency	kHz		25 Nom		55 Nom		
Transverse Sensitivity	%		5 N	Лах			
Amplitude Linearity	%		±1(BFS	L)/300g			
Insulation Resistance (2)	МΩ		2000	0 Min.			
Isolation Resistance	МΩ	0 (Case Gnd)		100 Min			
Vibration Limit	g		1000 Max		500 Max		
Shock Limit	g		2000) Max			
Temp. Range	°F/°C		-65 to +350	(-55 to +175)			
Humidity	%	0 to 98					
Base Strain Sensitivity	g/uE	0.003 Equiv 0.008 Equiv					
Electromagnetic Sensitivity	g	0.01					
Configuration	type	Ring Shear					
Weight	oz (gm)	0.1 (2.7)	0.16 (4.5)	0.25 (7.0)	0.14 (4.0)		
Housing	mat'l		18-8 S	tainless	•		
Electrical Interface	type		#10-32 Coaxial Thread		Miniature #2-56		
Mounting	Size	Adhesive	#10-32 Fixed Stud	# 4-48 Tapped Base	#2-56 x 9mm Socket Head. Cap Screw		
Sealing	type		Ер	оху	•		
Supplied Accessories							
Cable Assy (3)			LNF	IT-3'			
Mounting Stud		N/A	Integrated	#4-48 x 0.250 " Long	2-56 x 9mm Cap Screw		
Storage Case			Hard	wood			
Cal. Data			Υ	es			
Cal Certificate (4)			Υ	es			
Micro-Mini Cable Assy (5)			N/A		MMHR-6"		
Additional Hardware			N/A		10-32 Coupler (F/F)		


- 3. 3 Ft LNHT Cable (See Accessories Page).
- 4. Calibration Certificate is traceable to N.I.S.T.
- 5. Micro-miniature Cable Assembly 6 inch MMHR Cable (See Accessories Page)


The 8000 Series of Accelerometers are completely self-contained vibration measuring systems having a built-in amplifier within the housing. Low impedance of 150Ω or less allows operation directly into standard readout equipment without auxiliary signal conditioning. These sensors require a constant current power source like Columbia model 5421 Single Channel or Columbia model 5425 Four Channel.

SERIES 8000

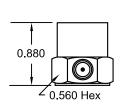
- INDUSTRIAL SENSORS
- LOW TO MEDIUM LEVEL VIBRATION
- CHOICE OF SENSITIVITIES
- LOW BASE STRAIN SENSITIVITIES

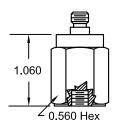
8011, 8012

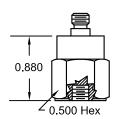
8201M5, 8201M10

8301M1, 8301M5, 8301M10

unit	8011	8012	8201-M5	8201-M10	8301-M1	8301-M5
mV/g	1 Nom	0.25 Nom	5 Nom	10 Nom	1 Nom	5 Nom
	±5000 Pk		±500 Pk	±250 Pk		
			2 to	8000		
kHz	50 Nom	75 Nom		40 N		
%			5 N	1ax		
%	±1.0(BFS	SL)/1000g	±1.0(BF	SL)/100g	±1.0(BF	SL)/250g
g	0.04	Nom	0.005	Nom	10 ⁻³	Nom
Vdc	1	0	ţ	5	10±	:1.5
Ω			100	Max		
МΩ		100	Min		0 (Cas	e Gnd)
mA/VDC		2 to 10 /	12 to 30		3.0 / 2	0 to 30
g	1000 Max	2000 Max	500	Max	1000	Max
g	5000 Max	5000 Max 20000 Max 1000 Max		5000 Max		
°F/°C		-65 to +250	-40 to +250 (-40 to +121)			
%	0 to 100 0 to				98	
g/uE	0.	0.02 0.003			0.0	008
g		0.	.01		0.0	001
type			Ring	Shear		
oz (gm)	0.6	(17)	0.2	I (6)	0.55 (15.5)	
mat'l			18-8 Sta	inless St		
type	#10-32 Coa	axial Thread	Miniature #2-56		#10-32 Coa	axial Thread
Size	#10-32 Ta	pped Base	#4-40	#4-40 Screw		pped Base
type	Herr	netic		Epo	оху	
		LNH	IT- 3'		LNH ⁻	Γ- 10'
	#10-32 x 0	.380" Long	#4-40	Screw	#10-32 x 0	.500" Long
			Hard	wood		
			Y	es		
			Y	es		
	N.	/A	MMHR - 6"		N/A	
1 1	N/A N/A		#10-32 Coupler(F/F)			, ,
	mV/g g Hz kHz % % % g Vdc Ω MΩ mA/VDC g g °F/°C % g/uE g type oz (gm) mat'l type Size	mV/g 1 Nom g ±5000 Pk Hz 2 to 10000 kHz 50 Nom % ±1.0(BFS g 0.04 Vdc 1 Ω MΩ mA/VDC g g 1000 Max g 5000 Max °F/°C % % 0 to g/uE 0. g type oz (gm) 0.6 mat'l type type Herr #10-32 x 0 #10-32 x 0	mV/g 1 Nom 0.25 Nom g ±5000 Pk ±20000 Pk. Hz 2 to 10000 2 to 15000 kHz 50 Nom 75 Nom % ±1.0(BFSL)/1000g g 0.04 Nom Vdc 10 Ω 100 MΩ 100 mA/VDC 2 to 10 / g 1000 Max g 5000 Max 9 5000 Max °F/°C -65 to +250 % 0 to 100 g/uE 0.02 g 0. type 0.6 (17) mat'l 10.32 Coaxial Thread Size #10-32 Coaxial Thread Size #10-32 Tapped Base type Hermetic	mV/g 1 Nom 0.25 Nom 5 Nom g ±5000 Pk ±20000 Pk ±500 Pk Hz 2 to 10000 2 to 15000 2 to 1 kHz 50 Nom 75 Nom 5 Nom % ±1.0(BFSL)/1000g ±1.0(BFSL)/1000g ±1.0(BFSL)/1000g ±1.0(BFSL)/1000g g 0.04 Nom 0.005	mV/g 1 Nom 0.25 Nom 5 Nom 10 Nom g ±5000 Pk ±20000 Pk ±500 Pk ±250 Pk Hz 2 to 10000 2 to 15000 2 to 8000 kHz 50 Nom 75 Nom 40 N % ±1.0(BFSL)/1000g ±1.0(BFSL)/100g 9 g 0.04 Nom 0.005 Nom 0.005 Nom Vdc 10 5 100 Max MΩ 100 Min 100 Max 100 Max g 1000 Max 2000 Max 500 Max g 5000 Max 500 Max 1000 Max °F/°C -65 to +250 (-54 to +121) 0 to 100 Max g 0 to 100 0 to 100 Max g 0.01 0 to 100 Max g 0.02 0.003 g 0.01 0 to 100 Max g 0.01 0 to 100 Max g 0.02 0.003 g 0.01 0 to 100 Max hype #10-32 Coaxial Thread Miniature #2-56 <	mV/g 1 Nom 0.25 Nom 5 Nom 10 Nom 1 Nom g ±5000 Pk ±20000 Pk ±500 Pk ±250 Pk ±100 Hz 2 to 10000 2 to 15000 2 to 8000 2 to kHz 50 Nom 75 Nom 40 Nom % ±1.0(BFSL)/1000g ±1.0(BFSL)/100g ±1.0(BFSL)/100g g 0.04 Nom 0.005 Nom 10° Vdc 10 5 10 Q 100 Min 0 (Cas MQ 100 Min 0 (Cas mA/VDC 2 to 10 / 12 to 30 3.0 / 2 g 1000 Max 500 Max 1000 g 5000 Max 1000 Max 5000 g 5000 Max 1000 Max 5000 g/uE 0.02 0.033 0.0 g 0.01 0.03 0.0 type Ring Shear 0.0 oz (gm) 0.6 (17) 0.21 (6) 0.55 (mat'l 18-8 Stainless St #1


Notes:


- 1. @75°F, 10g Peak, 100Hz Lower Frequency Limit Determined by Associated Electronics.
- 2. Calibration Certificate is traceable to N.I.S.T.

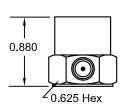

SERIES 8000 8

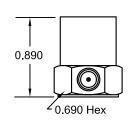
- ELECTRICALLY ISOLATED OR CASE GROUNDED
- BUILT-IN AMPLIFIERS
- SEALED FOR INDUSTRIAL APPLICATIONS

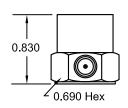
The 8000 Series of Accelerometers are completely self-contained vibration measuring systems having a built-in amplifier within the housing. Low impedance of 150Ω or less allows operation directly into standard readout equipment without auxiliary signal conditioning. These sensors require a constant current power source like Columbia model 5421 Single Channel or model 5425 Four Channel

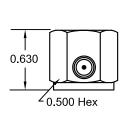
8302M1, 8302M5, 8302M10

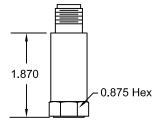
8303


8401M25, 8401M50, 8401M100


8301-M10	8302-M1	8302-M5	8302-M10	8303	8401-M25	8401-M50	8401-M100
10 Nom	1 Nom	5 Nom	10 Nom	100 Nom	25 Nom	50 Nom	100 Nom
±500 Pk	±100	0 Pk	±500 Pk	±80 Pk	±200 Pk	±100 Pk	±50 Pk
•		2 to 7000	•		2 to	8000	2 to 5000
	40 N	Nom		20 Nom	40	Nom	25 Nom
			5	Max			
	±1.0(BFS	SL)/250g			±1.0(BF	-SL)/50g	
	10 -3	Nom		0.0003		5 x 10 ⁻⁴ Nom	
	10±	1.5		10.5±1		10.25±1.5	
			100) Max			
	0 (Cas	e Gnd)		100 Min		0 (Case Gnd)	
	3.0 / 20	0 to 30		2 to 10 / 20 to 30		3.0 / 20 to 30	
	1000			500 Max		100 Max	
	5000	Max			1000) Max	
			-40 to +250	(-40 to +121)			
0 to 98	0 to 98	0 to 98	0 to 98	0 to 100	0 to 98	0 to 98	0 to 98
	0.0	08	,	0.02		0.08 Typ	•
	0.0	001			0.	.01	
	Ring	Shear		Single-Ended Compression			
	0.55 ((15.5)		1.0 (29)			
	<u> </u>	,	18-8 St	ainless St		,	
			#10-32 Co	paxial Thread			
			#10-32 T	apped Base			
	Epo	оху		Hermetic		Ероху	
	LNH	Γ- 10'		LNHT- 2m(200pF)		LNHT- 10'	
	#10-32	x 0.500"			#10-32	x 0.375"	
			Har	dwood			
				Yes			
				Yes			
				N/A			
				N/A			


^{3.} Mini Coaxial Cable Assembly - Columbia LNHT Cable (See Accessories Page).


SERIES 8000


- The 8000 Series of Accelerometers are completely self-contained vibration measuring systems having a built-in amplifier within the housing. Low impedance of 150Ω or less allows operation directly into standard readout equipment without auxiliary signal conditioning. These sensors require a constant current power source like Columbia model 5421 Single Channel or model 5425 Four Channel.
- LOW TO MEDIUM LEVEL VIBRATION
- CHOICE OF SENSITIVITIES
- LOW BASE STRAIN SENSITIVITIES

8402M25, 8402M50, 8402M100

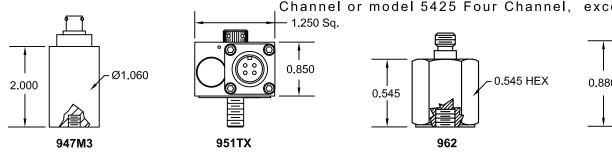
8405

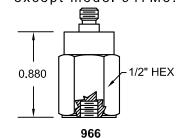
8410M50, 8410M100

8412

8501

8402191100							
MODEL	unit	8402M25	8402M50	8402M100	8405	8410M50	
Sensitivity (1)	mV/g	25 Nom	50 Nom	100 Nom	500 Nom	50 Nom	
Range	g	±200 Pk	±100 Pk	±50 Pk	±10 Pk	±100 Pk	
Frequency Range	Hz	2 to	8000	2 to 5000	2 to 6000	1 to 7500	
Mounted Resonant Frequency	kHz	40	Nom	25 Nom	15 Nom	25 Nom	
Transverse Sensitivity	%			5 Max			
Amplitude Linearity	%		±1.0(BFSL)/50g		±1.0(BFSL)/10g	±1.0(BFSL)/50g	
Electrical Noise	g		5 x 10 ⁻⁴ Nom		0.03 x 10 ⁻³ Nom	0.02 x 10 ⁻³ Nom	
Output Bias Voltage	Vdc		10.25±1.5		10.25±1.25	10.25±1.5	
Output Impedance	Ω			100 Max			
Isolation Resistance	ΜΩ		0 (Cas	se Gnd)		100	
Power Requirements	mA/VDC		3.0 / 20 to 30		2 to 10 / 18 to 30	2 to 10 / 20 to 30	
Vibration Limit	g		100 Max	50 Max	300 Max		
Shock Limit	g		1000 Max	100 Max	500 Max		
Temp. Range	°F/°C	-40 to +250 (-40 to +121)					
Humidity	%		0 t		0 to 100		
Base Strain Sensitivity	g/uE	0.08 Typ					
Electromagnetic Sens.	g	0.01 0.001					
Configuration	type		S	Single-Ended Compression	n		
Weight	oz (gm)		1.0 (29)		1.8 (51)	1.11 (31.5)	
Housing	mat'l			18-8 Stainless St			
Electrical Interface	type			#10-32 Coaxial Thread			
Mounting	Size			#10-32 Tapped Base			
Sealing	type		Ep	оху		Hermetic	
Supplied Accessories							
Cable Assy (3)			LNHT- 10'		LNHT	「-2m	
Mounting Stud				#10-32 X 0.375" Long			
Storage Case				Hardwood			
Cal. Data			Yes		N/A	Yes	
Cal Certificate (2)				Yes			
Micro-mini Cable Assy				N/A			
Additional Hardware				N/A			

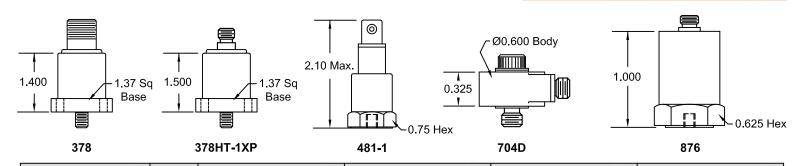

Notes:


- 1. @75°F, 10g Peak, 100Hz Lower Frequency Limit Determined by Associated Electronics.
- 2. Calibration Certificate is traceable to N.I.S.T.

SERIES 900

- **ELECTRICAL ISOLATION**
- **HERMETICALLY SEALED**
- **INDUSTRIAL APPLICATION SENSORS**

The 900 Series Integrated Accelerometers are electronically isolated and hermetically sealed. Model 947M3 is designed for measurement of low level, low frequency signals and operates from +12VDC battery power. Model 951TX provides high and low frequency response in a tri-axial configuration. Models 962 and 966 are small, lightweight sensors designed for measurement of high frequency, moderate to high-level shock and vibration. These sensors require a constant current power source, like Columbia model 5421 Single Channel or model 5425 Four Channel, except model 947M3.


8410M100	8412	8501	947M3	951TX	962	966	
100 Nom	10 Nom	100 Nom	2000 Nom		10 Nom		
±50 Pk	±250 Pk	±50 Pk	±1.75 Pk	±500 Pk			
1 to 7500	5 to 15000	1 to 5000	2 to 2000	1 to 10000	2 to 20000	2 to 10000	
25 Nom	55 Nom	15 Nom	10 Nom	40 Nom	40 Nom	40 Nom	
	5 Max		6 Max		5 Max		
±1.0(BFSL)/50g	±1.0(BFSL)/250g	±1.0(BFSL)/50g	±1.0(BFSL)		±1.0(BFSL)/250g		
0.02 x 10 ⁻³ Nom	5 x 10 ⁻³ Nom	0.5 x 10 ⁻³ Nom	0.0003 Nom	0.002 Nom	0.04	Nom	
10.25±1.5	5±1.25	10.25±1.5	5.0±1	10.25±0.75	10.2	25±1	
	100 Max		751	Vlax	100	Max	
0 (Case	e Gnd)			100 Min			
2 to 10 / 20 to 30	2 to 10 / 12 to 30	2 to 10 / 18 to 30	4.0 / 12	2 to 20 / 18 Min	2 to 10 /	18 to 30	
300 Max	1000 Max	300 Max	50 Max	500 Max	1000	Max	
500 Max	10000 Max	1000 Max	100 Max	2000 Max			
	-	40 to +250 (-40 to +12	1)		-50 to +250	(-46 to +121)	
0 to 100	0 to 98	0 to	100	0 to 98	0 to 100		
0.08	Тур	0.05 Typ	0.005 Typ	0.008 Typ	0.02	Тур	
	0.001		0.0	05	0.	01	
	Single-Ended	l Compression		Ring Shear	Shear Crystal Mass Assembly		
1.11 (31.5)	0.5 (14)	3.5 (100)	6.0 (170)	2.8 (80)	0.46 (13)	0.6 (17)	
	18-8 Sta	inless St		Aluminum Alloy	18-8 Sta	inless St	
#10-32 Coa	axial Thread	MIL-C-5015 (2 pin)	MS3113H-8-4P	PC02A-8-4P	#10-32 Coa	axial Thread	
#10-32 Tap	oped Base	1/4-28 Ta	pped Base	1/4-28 Cap Screw	#10-32 Ta	pped Base	
Hermetic	Ероху			Hermetic			
LNHT- 2m	LNHT- 10'	N/A	Optional	N/A	LNH	T- 3'	
#10-32 x 0.375"	#10-32 x 0.500"	1/4-28 x 0.625"	1/4-28 x 0.500"	N/A	#10-32	X 0.380"	
			Hardwood				
			Yes		<u> </u>	·	
			163				
			Yes				

^{3.} Columbia LNHT Cable (See Accessories Page).

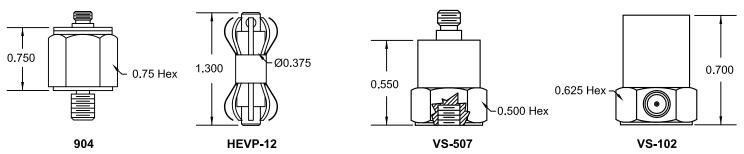
SPECIAL APPLICATION

Columbia's Special application Accelerometers have been developed over the years to meet special customer demands and widely used in industry today. The Accelerometers signals are self generating requiring no external power source

- INDUSTRIAL SENSORS
- ELECTRICALLY ISOLATED OR CASE GROUNDED

MODEL	unit	378 (6)	378HT-1XP	481-1	704D		
Sensitivity (1)	pC/g	1050 Nom	55 Nom	60 Nom	14 Nom / 10 Min		
Capacitance	pF	13000±1000	1100±100	725±60	900±200		
Frequency Range	Hz	1 to 2000	2 to 2000	2 to 5000	2 to 6000		
Mounted Resonant Frequency	kHz	10 1	Nom	25 Nom	30 Nom		
Transverse Sensitivity	%		5 N	1ax			
Amplitude Linearity	%	±1.0(I	BFSL)	±1.0(BFSL)/500g	±1.0(BFSL)		
Insulation Resistance (2)	МΩ		1000	0 Min			
Isolation Resistance	МΩ	100	Min	0 (Case Gnd)	100 Min		
Vibration Limit	g	500	Max	1000	Max		
Shock Limit	g	1000	Max	2000	Max		
Temp. Range	°F/°C	-65 to +350 (-54 to +175)	-100 to +750 (-73 to +398)	-100 to +350 (-73 to +175)	-65 to +350 (-54 to +175)		
Humidity	%	0 to	100	0 to 98			
Base Strain Sensitivity	g/uE		0.003				
Electromagnetic Sens.	g	0.005					
Configuration	type		Ring Shear				
Weight	oz (gm)	6.8 (193)	1.9 (55)	0.42 (12)		
Housing	mat'l		18-8 Sta	inless St			
Electrical Interface	type	Amphenol 172-310SL-3P2	Stainless St. Sheathed Cable w/ 10-32 Adapter	BNC Connector	#10-32 Coaxial Thread		
Mounting	Size	1/4-28 Tapped Base	e w/ # 8-32 Holes (4)	#10-32 Tapped Base	#6-32 Thru Hole (360° Mounting)		
Sealing	type	Ероху	Hermetic	Ер	оху		
Supplied Accessories							
Cable Assy (3)		N/A	LNHT- 3'	N/A	LNHT- 10'		
Mounting Stud		1/4-28 x 0	.500" Long	#10-32 x 0.500" Long	#6-32 x 0.500" Long Bolt		
Storage Case			Hard	wood			
Cal. Data			Ye	es	<u> </u>		
Cal Certificate (4)			Ye	es			
Additional Hardware			N/	/A			

Notes


1. @75°F, 10g Peak, 100Hz Lower Frequency Limit Determined by Associated Electronics.

2. 50VDC Test.

SPECIAL APPLICATION

- INDUSTRIAL SENSORS
- ELECTRICALLY ISOLATED OR CASE GROUNDED

Columbia has developed many special application accelerometers over the years to meet the demands of our customers. These special purpose accelerometers are widely used in the industry today. Do you need an accelerometer to work in the cold to -400°F, or maybe one that will work just fine up to +700°F? How about a light weight, bi-axial, waterproof accelerometer with integral cable for use inside a pipe or tube? If you have a requirement, please give us a call, we would be happy to make something "special" for you.

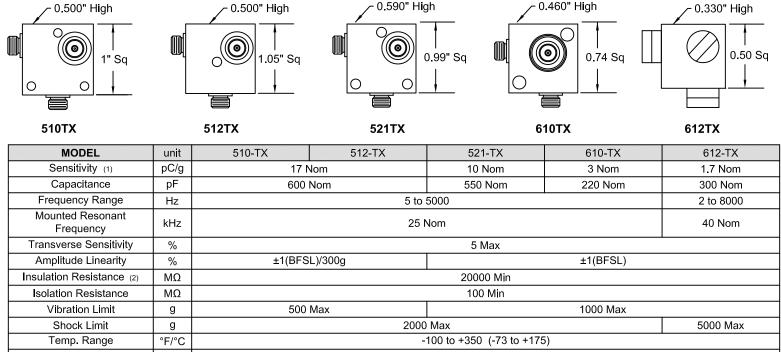
876 (5)	904	HEVP-12	VS-102	VS-507	
50 Nom	100 Nom	40 Nom	1.5 Nom	7.0 Nom	
4200±100	9000±100	500	85	525±50	
2 to 4000	1 to 2000	2 to 500	1 to 1	0000	
20 Nom	30 Nom	2.5 Nom	50 Nom	60 Nom	
	5 Max		<	3	
±1.0(BFSL)/2000g	±1.0(BFSL)/500g	±1.0(BFSL)	±0.5%, ±1.0%, ±1.5%	±0.5%, ±1.0%, ±1.5%	
	10000 Min		2000	0 Min	
50 Min		0 (Cas	e Gnd)		
3000 Max	1000 Max	25	500 Max	1000 Max	
10000 Pk	1000 Max	50	N.	/A	
-450 to +300 (-267 to +149)	-100 to +350 (-73 to +175)	-40 to +350 (-40 to +175)	Lab-Controlled Environment	Lab-Controlled Environment	
0 to 100	0 to 98	0 to 100	0 to 100 0 to 98		
0.005	0.005 0.05		0.05		
0.0	005	N/A	0.01		
Bolted Shear Plate	Single Ended Compression	Bender	N/A	N/A	
1.2 (33)	1.5 (42.5)	0.53 (15)	0.7 (21)	0.5 (14)	
18-8 Sta	inless St	316 Stainless St	18-8 Stainless St		
#10-32 Coa	axial Thread	Hard wire Cable w/ #10-32 Adapters (2)	#10-32 Coaxial Thread		
#10-32 Tapped Base	3/8-24 Fixed Stud	Compression Tension Springs	#10-32 Tapped Base		
Hermetic	Ероху	Hermetic	Epo	оху	
N/A	LNHT- 10"	LNHT - 3' (2)	LNH ⁻	T- 10'	
#10-32 x 0.500" Long		I/A #10-32 x 0.375" Long		.375" Long	
Hard	wood	N/A	N/A Hardwood		
		Yes			
		Yes			
		N/A			

 $^{{\}it 3. Mini Coaxial Cable Assembly - Columbia LNHT Cable (See Accessories Page)}.$

^{5.} Model 876 Standard Room Cal. Data is Supplied. Low Temp. Cal. Data is optional.

^{4.} Calibration Certificate is traceable to N.I.S.T.

Triaxial Accelerometers


The Columbia 500TX and 600TX Triaxial Accelerometers perform simultaneous measurement of vibration acceleration in three mutually perpendicular axes. They are designed for low to medium level shock and vibration measurements where three dimensional characterization of dynamic responses of a structure is required. The signal is self-generating requiring no external power source. For best performance, Columbia Model 4601 Charge Amplifier, Series 5648 Airborne Amplifiers or 5421 Power supply combined with Inline charge converter model 5810 are recommended for use with these high impedance accelerometers.

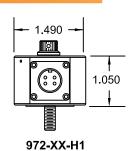
SERIES 500TX / 600TX

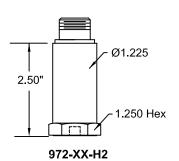
- **EXTREME SMALL SIZE**
- STUD OR ADHESIVE MOUNT
- **LOW BASE STRAIN**

0.460" High

HIGH TEMPERATURE VERSIONS AVAILABLE

0.590" High


OHOOK EITHE	⁹	2000 Wax				
Temp. Range	°F/°C		-100 to +350 (-73 to +175)			
Humidity	%		0 to 98			
Base Strain Sensitivity	g/uE			0.002		
Electromagnetic Sensitivity	g			0.01		
Configuration	type	S	ingle Ended Compression	on	Inverted F	Ring Shear
Weight	oz (gm)	1.27 (36)	1.45 (41)	1.48 (42)	0.53 (15)	0.28 (8)
Housing	mat'l	Stainless St / Aluminum				
Electrical Interface	type		#10-32 Coaxial Thread			
Mounting	Size	#4-40 (3)	#6-32	#4-40 (3)	#6-32 (2)	Adhesive
Sealing	type			Epoxy		
Supplied Accessories						
Cable Assy (3)		LNHT -	10' (3)	LNHT - 6" (3)		LNHT - 3'
Mounting Stud		#4-40 x 0.75 Socket Head Cap Screw (3)	#6-32 x 0.75 Socket Head Cap Screw	#4-40 x 0.75 Socket Head Cap Screw (3)	#6-32 x 0.625 Socket Head Cap Screw (2)	N/A
Storage Case		Hardwood				
Cal. Data		Yes				
Cal Certificate (4)		Yes				
Micro-Mini Cable Assy (5)		N/A MMHR - 6" (3)				
Additional Hardware			N	/A		#10-32 Coupler (F/F)


- 1. @75°F, 10g Peak, 100Hz Lower Frequency Limit Determined by Associated Electronics.
- 2. 50VDC Test
- 3. Columbia LNHT Cable (See Accessories Page).
- 4. Calibration Certificate is traceable to N.I.S.T.

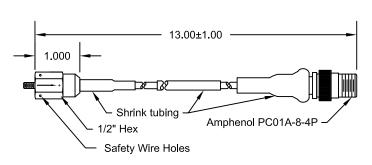
SERIES 972

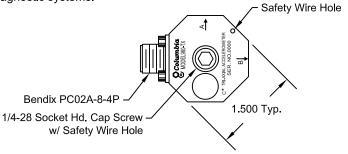
- **CHOICE OF TWO CASE DESIGNS** & MOUNTING CONFIGURATIONS
- **REVERSE POLARITY PROTECTED**
- TWO 4-20mA SIGNAL OUTPUTS, **VIBRATION LEVEL AND TEMPERATURE**

The Columbia 972 Series Solid State Loop-Powered Vibration and Temperature Sensors are specifically designed for industrial machinery monitoring. The Sensors provide level monitoring, alarm and machinery shutdown capabilities in a choice of ranges, response characteristics and output configuration. These sensors operate from 10-36 volts DC power supply and transmit data directly into a PLC, providing accurate level monitoring and with support alarm and machinery shutdown capabilities.

MODEL	unit	V1	V2	V5	A10	A20	A50	
Range	in/sec pk	0 to 1	0 to 2	0 to 5		N/A	•	
Range	G's pk		N/A	•	0 to 10	0 to 20	0 to 50	
Accuracy	%			±5 From (to 100°C		•	
Frequency Response	dB			±0.5, 5H	z to 2kHz			
Output Ripple	%			<1 of Read	ling @10Hz			
Output Rise / Fall Time	sec			1, 10%	to 90%			
Sensor	type			100Ω PT RT	D, Linearized			
Output	mA			4 @ 0°C to 20	0mA @ 100°C			
Accuracy	°C			±′	1.5			
Min. Operating Voltage	vdc			1	0			
Max. Operating Voltage	vdc		36					
Isolation	МΩ		100 Min. Circuit to Circuit and Circuit to Case					
Reverse Polarity	protected		Both Circuits					
Operating Temperature Range	°C		0 to +100					
Case Options			H1			H2		
Weight	gm		150		230			
Housing	mat'l		Aluminum Alloy		Stainless Steel			
Electrical Interface	type	I	PC02A-8-4P or Equiv	/ .	MIL-C-5015			
Mounting	Size	1/4-28 x	1.50 Socket Head C	ap Screw		1/4-28 Tapped Base		
Supplied Accessories								
Cable Assy				N	/A			
Cal Certificate (4)		Yes						
Mounting Stud			N/A			1/4-28 x 0.25		
Data Sheet				Υ	es			
Additional Hardware		PC06E84	1S or Equiv. Mating (Connector	MS310	06A-14-S Mating Cor	inector	

^{5.} Micro-miniature Cable Assembly - Columbia MMHR (See Accessories Page).

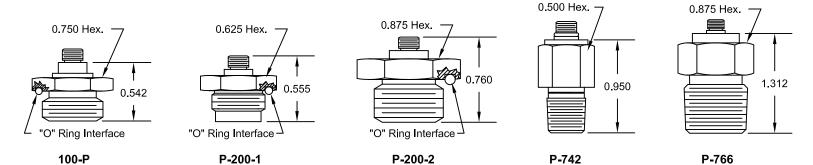

Vibration


15

The Columbia 961 and 960-TX are designed specifically to monitor vibration generated by Military and Commercial helicopter engines, transmissions and airframes. The single axis 961 incorporates an integral two conductor shielded cable and is available with an optional top mount 10-32 connector. The triaxial 960-TX has three miniature mutually perpendicular vibration sensors mounted into a rugged machined housing which incorporates a single central mounting screw. The model 961 and each sensor in the 960-TX features integrated thick film electronic signal conditioning circuitry which provides high sensitivity, temperature compensation and low impedance output drive capability. These sensor configurations are ideally suited to other vibration monitoring applications such as aircraft modal and structural analysis, shipboard engine vibration monitoring, commercial machinery vibration monitoring and as the primary vibration sensor for all predictive maintenance vibration diagnostic systems.

SERIES 961/960-TX

- SINGLE OR TRIAXIAL VERSIONS
- ENGINE, TRANSMISSION AND AIRFRAME VIBRATION MEASUREMENT


961 960-TX

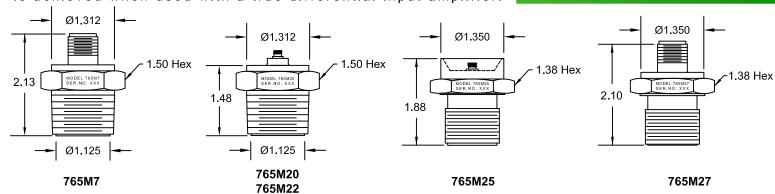
		555 1X			
MODEL	unit	961	960-TX		
Sensitivity	mV/g	10	Nom		
Frequency Range @±1dB	Hz	2 to15000	1 to 10000 (Single Axis) 2 to 2000 (Mounted A, B, C Axis)		
Absolute Phase Shift	°@2.5Hz	< 5	< 6		
Relative Phase Shift	°@2.5Hz	±2	Max		
Amplitude Linearity	%	±1 to	o 100g		
Vibration Limit	g	500	Peak		
Shock Limit	g	1000	0 Peak		
Temperature Range	°F	-30 to +225	-35 to +120		
Transverse Sensitivity	%	5	Max		
Broadband	g	< 0.002 RMS Eq	uivalent (2-25kHz)		
Spectral Noise	@ 2.5Hz	160µg/√Hz Nom	-116dBV/√Hz Max		
Output Impedance	Ω	<	600		
Power Requirements	mA	2 ±5% at a refer	ence of 18-30VDC		
Bias Voltage	VDC	83	±1.5		
Electrical Isolation	type	Case	Isolated		
Housing	mat'l	Stainless Steel	6061 Aluminum		
Finish	type	N/A	Black Anodize per MIL-A-8625		
Weight	gm	20 typ	90 typ		
Mounting	size	1/4-28 Tapped Base	1/4-28UNC-3A x 1.500 Captive Thread, Socket Hd. Cap Screw		
Electrical Interface	type	13" Min., two conductor cable with PC01A-8-4P connector	PC02A-8-4P		
Supplied Accessories					
Mounting Stud		1/4-28UNF-2B	N/A		
Storage Case		Hardwood			
Test Data		\	⁄es		

SERIES 'P'

- HIGH PRESSURE
- FAST PRESSURE VARIATION SURGES & DYNAMIC BLASTS
- WIDE FREQUENCY RESPONSE

The models in this section are Pressure Transducers ideal for use in applications with fast pressure variations, surges and dynamic blasts. Model 100P and series P200 are small, lightweight sensors with a wide frequency response cable of measuring very low, 0.005 psi and very high, 5K psi.Models P-742 and P-766 are ideal for use in high level dynamic pressure events, including high intensity sound pressure levels in the frequency range of 2-10KHz.

MODEL	unit	100-P	P-200-1	P-200-2	P-742	P-766
Charge Sensitivity	pC/psi	150	25		9	25
Pressure Range	psi	0.005 to 5000	0.01 t	o 5000	10000	5000
Pressure Overload (without damage)	psi	10000 Max.	50	0%	20000	10000
Frequency Response	Hz	2 to 12000	2 to	18000	2 to 1	0000
Resonant Frequency	kHz	60	ę	90	100	60
Amplitude Linearity	%			±2		
Capacitance	pF		500		75	400
Insulation Resistance	МΩ			1000		
Grounding	Туре	Case (Ground	Electrically Isolated	Case Grounded	
Vibration Limit	g	N/A 500		N/A		
Shock Limit	g	N/A	10	000	N/A	
Temp. Range	°F			-65 to +300		
Humidity (1)	%R.H.			0 to 100		
Weight	oz	0.55	0.3	0.	6	2.3
Housing	mat'l			316 Stainless Steel		
Electrical Interface	type		#10-32 Coaxial Threads			
Mounting	Size	9/16-24 Straight Thd.	7/16-28NEF	9/16-24 NEF-2	1/8 NPT (M)	1/2 NPT (M)
Supplied Accessories						
Cable Assy (2)		LNHT - 3 Ft				
Storage Case		Hardwood				
Cal. Data		Yes				
Additional Accessories				N/A		

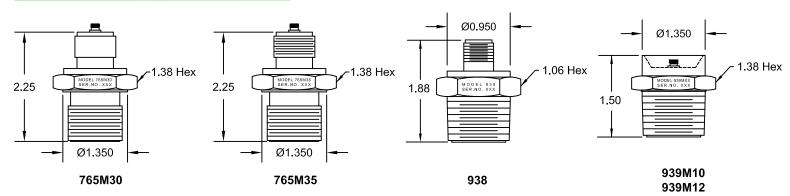

Notes:

- 1. With connector mated or protected, unit is hermetically sealed.
- 2. Mini Coaxial Cable Assembly Columbia LNHT Cable (See Accessories Page).

Dynamic Pressure Sensors

Columbia's series 765M-XX of High Intensity Acoustic Sensors (Microphones) are designed for the measurement of gas-borne sound in industrial applications. Together with either a miniature 10-32 fused glass coaxial connector or 2-pin connector, and the all-welded construction these units are hermetically. Electrically these devices comprise sensing elements of piezo ceramic material in a balanced and floating configuration to provide enhanced rejection of electrical noise associated with many industrial environments. Optimum performance is achieved when used with a true differential input amplifier.

- **SERIES 765**
- HIGH SENSITIVITY
- HIGH TEMPERATURE
- ELECTRICALLY ISOLATED

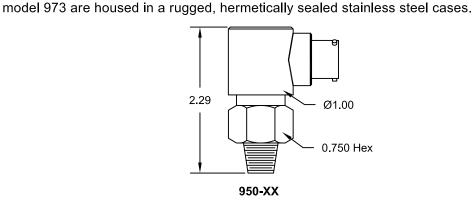

MODEL	unit	765M7	765M20	765M22	765M25
Charge Sensitivity	pC/psi	2000 2200 1200			00
Frequency Response	Hz		2 to 8	3000	
Dynamic Range	psi		0.28x10	⁻⁴ to 10	
Average Temperature Coefficient of Sensitivity	%/°F Nominal		0.0	08	
Transducer Capacitance	pF	12	000	630	00
Insulation Resistance	МΩ		100	Min	
Isolation Resistance	МΩ		100	Min	
Dielectric Strength	Vrms, Hz Element to Housing		550	, 60	
Vibration Limit	g		10	0	
Shock Limit	g	1000			
Temp. Range	°F	-10 to +500			
Humidity (1)	%R.H.		0 to	100	
Static Pressure	psi		30	00	
Electromagnetic Sensitivity	g (Equivalent/100)		0.0	05	
Configuration	type		Balanced Floatir	ng Compression	
Weight	OZ		7.5		7.0
Housing	mat'l		316 Stain	ess Steel	
Electrical Interface	type	MIL-C-5015		#10-32 Coaxial Thread	
Mounting	Size			1.125-12UNF-2A Straight Thread	
Supplied Accessories					
Cable Assy (2)		N/A LNHT - 3M			
Storage Case		Hardwood			
Cal. Data		Yes			
Additional Accessories			N/	A	

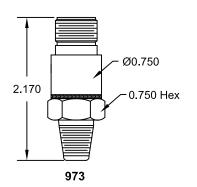
Notes:

- 1. With connector mated or protected, unit is hermetically sealed.
- 2. Mini Coaxial Cable Assembly Columbia LNHT Cable (See Accessories Page).

- **SERIES 93x** • ELECTRICALLY ISOLATED
- **HIGH TEMPERATURE**
- **CHOICE OF ELECTRICAL INTERFACE**

Columbia's model 938 and series 939M are also designed to measure gas-borne sound in industrial applications and are a hermetically sealed units with all welded construction. The model 938 has the same sensing elements as the 765M series but boasts a wider frequency range. The 939M series also has a wider frequency range and is capable of operating up to 500°F.




765M27	765M30	765M35	938	939M10	939M12
1200	2	2100	800	12	200
	2 to 8000		2 to 15000		
	0.28x	10 ⁻⁴ to 10		0.10 x 1	0 ⁻⁴ to 10
		0.08			
6300	1	4500	8100	12	000
		100 Mi	in		
		100 Mi	n		
		550, 6	0		
		100			
	,	1000		20	000
		-10 to +5	500		
		0 to 10	00		
	3000		550		
		0.005	;		
	Balanced Floa	ating Compression		Single-Ended	l Compression
	7.0		3.9	8	.0
		316 Stainles	s Steel		
MIL-C-5015	Isolated #10-32 Coaxial	Isolated #10-32 Coaxial 1/2-14 NPSM Straight Thd.	MIL-C-5015	#10-32 Co	axial Thread
1.125-12UNF-2A Straight Thread	1.125-12UNF-2A Straight Thread	1.125-12UNF-2A Straight Thread	3/4 NPT Male	1"NPT Male	1.125-12UNF-2A Straight Thread
N/A	N/A LNHT - 3M			LNH	Г - 3М
		Hardwo	od		
		Yes			
	N/A		Mating Connector	N	/A

Columbia's Series 950 Pressure Transducers are completely self contained measuring systems that are available in a variety of voltage sensitivities. These sensors have a long history of successful operation in oil drilling applications. Model 973 is designed for measurement of high level pressure pulses and dynamic blasts in the frequency range of 2-18KHz. The sensors integral electronic buffer provides a low impedance output when used with constant current sources of 2 to 10mADC. Both the 950 series and

SERIES 950/973

- WIDE FREQUENCY RESPONSE
- HIGH PRESSURE
- ELECTRICALLY ISOLATED
- HERMETICALLY SEALED

MODEL	unit	950-XX	973
Available Voltage Sensitivity	mV/psi	10 to	25
Pressure Range	psi	500	
Pressure Overload (without damage)	psi	10K Max	ximum
Frequency Response	Hz	5 to 18k	2 to 18k
Resonant Frequency	kHz	90)
Amplitude Linearity	%F.S.	±1	1
Full Range Output	VPK	±5	5
Grounding	V pk into 10kΩ	Isola	ted
Output Impedance	Ω (Nominal)	50)
Output Bias Voltage	VDC	N/A	10.5
Power Requirement (1)	mA DC Nominal	4.0, 18 to 30VDC	
Isolation Resistance	MΩ Minimum	50	
Temperature Range	°F	-40 to +185	-40 to +250
Humidity (2)	% R.H.	0 to 3	100
Configuration	Type	N/A	Double Ended Compression
Weight	oz	5.3	1.94
Housing	Material	303 Stainless Steel - Upper Body 17-7 Stainless Steel - Lower Body C-276 Hastelloy - Diaphragm	17-7 Stainless Steel - Body C-276 Hastelloy - Diaphragm
Electrical Interface	Туре	PT02-10-6P	MIL-C-5015
Mounting	Size	1/4 NPT Male, Recessed Diaphragm	1/4-18 UNF NPT Male
Supplied Accessories			
Storage Case		Hardwood	
Calibration Data		Yes	
Additional Accessories		Mating Co	onnector

Notes:

- 1. Unit must be powered with 2 to 10mA DC Current Source having a compliance voltage of 18 to 30VDC.
- 2. With connector mated or protected, Unit is Hermetically Sealed.

Model 5425 Four Channel Constant Current Power Supply

Model 5425 is a four-channel, battery operated constant current power supply specifically designed to be used with constant current mode accelerometers such as the Columbia 8000 Series. The output current to the transducer is set to 3.0mA DC nominal. Individual inputs and outputs are made through 10-32 and BNC connectors located on the rear panel.

Please contact the factory for further details.

Model 4601 Charge Amplifier

Model 4601 is a High-Performance instrument for general purpose use with piezoelectric transducers for the measurement of acceleration, force and dynamic pressure. It features wide bandwidth, low noise, low output offset and a gain control calibrated directly in transducer sensitivity for easy setup.

Model 5421 Single Channel Constant Current Power Supply

Model 5421 provides a convenient unity gain interface between any Columbia 900 8000 Series Inegrated or Piezoelectric Accelerometer and variety of display or analyzing type instruments. The supply provides a 4.0 mA DC constant current to the pre-amplification circuitry within the transducer, thus eliminated the need for a complex and costly charge amplifier. This model requires a user-supplied source of DC voltage between +12 to +32 volts.

Models 5810 and 5812 Inline Charge Converter

These models convert the charge signal from a high impedance piezoelectric sensor into a voltage signal with low impedance. In many cases eliminating the need for costly charge amplifiers. These models are available in three fixed gain settings of 0.1, 1.0 and 10mV/pC. Model 5810 is a single channel device that requires a constant current power source like Columbia's model 5421. Model 5812 contains three active signal channels powered from a common external standard DC power supply.

For complete specifications on any of the Signal Conditioning Instruments on this page Please visit our web site www.crlsensors.com

Model 5820 Miniature Charge Amplifier

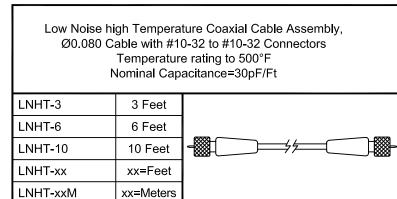
Series 5820 Charge Amplifier are designed for use with virtually all piezoelectric transducers to form various airborne vibration and shock data acquisition systems. The amplifier provides both biased, around +2.50VDC and one unbiased capacitance coupled outputs and are available in seven standard charge conversion ranges, each offering a 10:1 single gain adjustment capability.

Model 5648-X Constant Current Power Supply / Signal Conditioner

Model 5648-X provides a ruggedized unity gain interface useable with Acceleration, Pressure, or Acoustic Sensors with built in contact current powered electronics, like Columbia's 8000 and 900 Series. This device provides both AC Coupled and Biased Signal Output and requires a user-supplied source of DC voltage between +16 and +32 volts.

Model 5624 Airborne Charge Amplifier

Model 5624 is designed for use with virtually all piezoelectric transducers to form various airborne vibration and shock data acquisition systems. This model provides both Acceleration and Velocity outputs from an individual signal conditioning amplifier. It also features a small package size and very low power consumption.


Model 5840 Differential Airborne Charge **Amplifier**

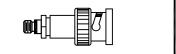
Model 5840 is designed to operate with differential output piezoelectric vibration sensors typically used in aircraft engine condition monitoring systems. The amplifier features a small package and extremely low power consumption and provides both Acceleration and Velocity outputs.

For complete specifications on any of the Signal Conditioning Instruments on this page Please visit our web site www.crlsensors.com

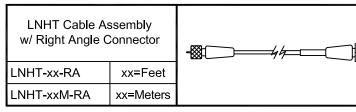
CABLE ASSEMBLIES

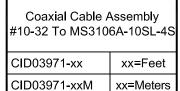
Standard Cables

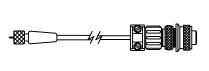
Microminiature Low Noise Cable Assembly, Ø0.055" Cable with #2-56 to #10-32 Connectors. Temperature rating to 500°F

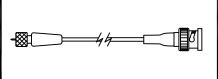

MMHR-6	6 Inch	
MMHR-12	12 Inch	
MMHR-18	18 Inch	■ □
MMHR-xx	xx=Inches	
MMHR-xxC	xx=cm	

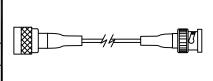
Cable Adapters

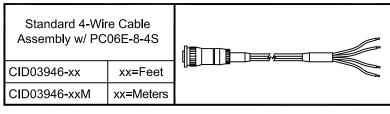

LNHT Cable Extension Coupler, P/N Z300492




#10-32 Female To BNC Adapter, P/N Z300742

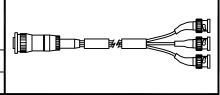

Special Order Cables




LNHT Cable Assembly #10-32 to BNC Connector		
LNHT-xx-BNC	xx=Feet	
LNHT-xxM-BNC xx=Meter		

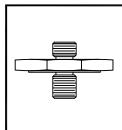
Coaxial Cable Assembly TCN To BNC Connectors	
CID03046-xx	xx=Feet
CID03046-xxM	xx=Meters

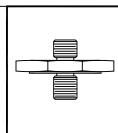
Cable Options for Model 951-TX Triaxial Accelerometer



3-Wire Cable As PC06E-8-4S To		
CID03958-xx xx=Feet		
CID03958-xxM	xx=Meters	

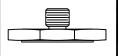
	Standard 3-Wire Cable Assembly w/ PC06E-8-4S	
Feet	CID03959-xx xx=Feet	
1eters	Tx	CID03959-xxM


3-Wire Cable As PC06E-8-4S T	
CID03960-xx	xx=Feet
CID03960-xxM	xx=Meters

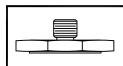

Columbia Research Laboratories, Inc. 1925 MacDade Blvd. Woodlyn, PA 19094 USA

MOUNTING ACCESSORIES

Isolated Mounting Adapters, Stud Mount

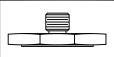


IMS 1	½" Hex X 10-32UNF X 10-32UNF
IMS 5	%" Hex X 10-32UNF X 10-32UNF
IMS 9	3/4" Hex X 10-32UNF X 10-32UNF
IMS 3	½" Hex X 10-32UNF X ½-28
IMS 7	5/8" Hex X 10-32UNF X 1/4-28
IMS 11	¾" Hex X 10-32UNF X ¼-28



IMS 2	½" Hex X ¼-28 X 10-32UNF
IMS 6	½" Hex X ¼-28 X 10-32UNF
IMS 10	¾" Hex X ¼-28 X 10-32UNF
IMS 4	½" Hex X ¼-28 X ¼-28
IMS 8	½" Hex X ¼-28 X ¼-28
IMS 12	³ / ₄ " Hex X 1/ ₄ -28 X 1/ ₄ -28

Isolated Mounting Adapters, Adhesive Mount



IMA 1	½" Hex X 10-32UNF
IMA 3	%" Hex X 10-32UNF
IMA 5	3/4" Hex X 10-32UNF

IMA 2	½" Hex X ½-28
IMA 4	5⁄8" Hex X 1∕₄-28
IMA 6	¾" Hex X ¼-28

Non-Isolated Mounting Adapters, Adhesive Mount

NMA 1	½" Hex X 10-32UNF
NMA 3	%" Hex X 10-32UNF
NMA 5	¾" Hex X 10-32UNF

]

NMA 2	½" Hex X ½-28
NMA 4	½" Hex X 1⁄4-28
NMA 6	¾" Hex X ¼-28

Magnetic Mounts

Z301017

Permanent Magnet, Pot Style, Threaded for #10-32 Screw, \emptyset 13 /₆" x 3 /" High

Z302053

Permanent Magnet, Pot Style, Threaded for #10-32 Screw, Ø1.38 x 1.18" High

Triaxial Mounting Block

	\ \ \	
,	2	

TMB2	1" Cube Stainless Steel Block with (3) #8-32 Tapped Mounting Holes
TMB4	1" Cube Stainless Steel Block with (3) #10-32 Tapped Mounting Holes

000

	TMB3	(3) #8-32 Tapped Mounting Holes
	TMB5	11/4" Cube Stainless Steel Block with (3) #10-32 Tapped Mounting Holes

Clamp Assembly for Ø10.0" or Smaller

CAS1	1" Hex x 5" Long Thermal Insulator Standoff with 1/4-28 Accelerometer Mounting Hole & 36" Long Strap
CAS2	1" Hex x 5" Long Thermal Insulator Standoff with 10-32 Accelerometer Mounting Hole & 36" Long Strap

CAS3	1%" Hex x 5%" High Adapter with 10-32 Accelerometer Mounting Hole & 36" Long Strap
CAS5	1⅓" Hex x ⅓" High Adapter with 1/4-28 Accelerometer Mounting Hole & 36" Long Strap